密级: 商密★5年

SFB3000A 小型激光测距机 使用维护说明书

代号 <u>SFB3000A(SM)</u> 研制阶段<u>S</u> 第<u>分册</u> 共 <u>22</u> 页

盛飞光速科技 (成都) 有限公司

2024年3月

编制部门: 总体技术部

	签字	日期		签字	日期
设计	李亚方	2024.03.07	部长	刘双才	2024.03.07
审核			总师	张国雷	2024.03.07
工艺			质量		
标准化			档案		

更改记录标识页

序号	更改 日期	更改依据	更改内容	更改前 版本号	更改后 版本号
1					

目 次

1 概述	1
2 产品的组成、配套、工作原理以及与交联设备的关系	1
2.1 配套	1
2.2 交联关系	2
2.2.1 机械及光学接口	2
2.2.2 电气接口	2
2.2.3 软件	3
3 主要技术指标	11
3.1 功能	11
3.2 性能	11
3.3 环境适应性	11
3.4 测距能力	12
3.5 安全性	12
4 光窗使用建议	12
4.1 材料选型	12
4.1.1 光窗材料	13
4.1.2 加工要求	13
4.2 使用建议	13
4.2.1 光窗镀膜建议	13
4.2.2 光窗外形及使用建议	13
5 操作	13
5.1 开机操作	13
5.1.1 开机	13
5.2 关机操作	14
5.2.1 关机前	14
5.2.2 关机	14
5.3 使用操作	
5.3.1 测距模式	14
5.3.2 首末目标与距离选通设置	
5.3.3 自检模式	14
6 检查与维护	15
6.1 一般检查	15

安全须知

为了安全使用本产品, 在操作本产品前应认真阅读本使用说明

- a) 本激光测距机为精密的光学机械产品,不按规定操作可能导致危险的激光伤害,不要打开或者调整激光测距机的任何部分,不要试图自行修理、调节激光测距机的性能;
- b) 注意静电防护: 激光测距机电子部件是静电放电敏感设备, 在无保护措施的情况下不要触摸任何电子设备;
 - c) 只允许在规定的电压和功率范围内打开激光测距机电源进行操作;
 - d) 禁止用手指或硬物触碰光学镜片(防止油脂污染或划伤镜片);
 - e) 禁止在过近距离测量高反射率目标(防止损坏探测器核心器件等);
 - f) 禁止在非规定条件(高污染环境、超出贮存温度范围等)下贮存;
 - g) 禁止激光测距机遭受到强烈的机械冲击 (振动,冲击,摔落等)。

1 概述

SFB3000A小型激光测距机(以下简称激光测距机)是通过对被测目标发射激光,并根据激光飞行时间计算距离信息的精密光电产品。本激光测距机通过TTL通信接口实现通讯,具有性能突出、操作简洁的特点。本测距机激光波段为1535nm,属于人眼安全激光的产品。

2 产品的组成、配套、工作原理以及与交联设备的关系

SFB3000A小型激光测距机产品的主要组成如下:

- a) 控制及信息处理电路组件;
- b) 激光电源电路组件;
- c) 接收发射组件。

外形尺寸为≤48mm×30.5mm×21mm, 重量32g±1g。其外观如图1所示。

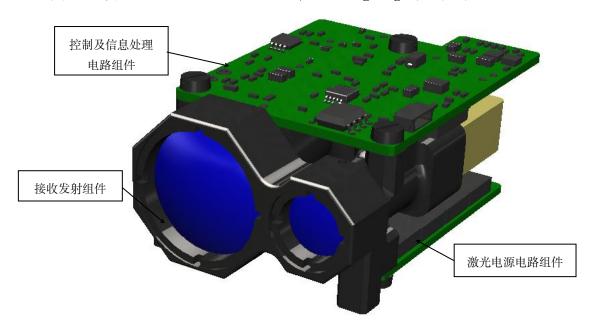


图 1 产品外观图

2.1 配套

随产品提供的配套见表1。

表 1 配套

序号	配套名称	数量	备注
1	防静电自封袋	1	
2	干燥剂	1	
3	产品合格证	1	
4	通讯插头	1	

5	包装盒	1	
5	· · · · · · · · · · · · · · · · · · ·	1	

2.2 交联关系

2.2.1 机械及光学接口

机械及光学接口的外形尺寸如图2所示。

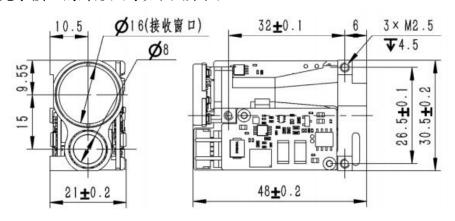


图 2 机械及光学接口图

质心位置如图3所示。

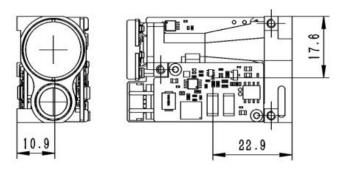


图 3 质心位置示意图

2.2.2 电气接口

电气接口要求如下:

- a) 电源电压: 4.5V~16V;
- b) 待机功耗: ≤0.6W;
- c) 平均功耗: ≤1.5W@1Hz;
- d) 峰值功耗: ≤7W@12V;
- e)接口定义:接插件型号:长江连接器: A1257WR-S-6P, 测距机端供电及通讯端口引脚定义如表1所示。

义
•

引脚序号	标号	备注
P-1	VIN+	供电,4.5~16V
P-2	VIN-	负极
P-3	POWER_ON	模块电源开关,TTL_3.3V电平;

		模块开启 (>2.7V) , 模块关闭 (<0.3V)
P-4	UART_TX	串口发送端,TTL_3.3V电平
P-5	UART_RX	串口接收端,TTL_3.3V电平
P-6	GND	串口地

2.2.3 软件

2.2.3.1 通讯协议

2.2.3.1.1 通讯速率与格式

格式标准	波特率:115200bps (出厂) /57600bps/9600bps				
	字节数据格式: 1起始位, 8数据位, 1停止位, 无校验				

2.2.3.1.2 数据包基本格式

区段说明	区段长度 (字节数)	取值范围	备注	
帧头	2	0xEE 0x16	固定值	
数据长度	1	2~9	数据长度是设备代码、命令代码、命令参数这 三部分的总字节个数	
设备代码	1	0x03	固定值	
命令代码	1	0 ~ 255	指示当前控制命令的控制对象	
命令参数	0 ~ 4	0 ~ 255	指示当前控制命令的控制对象参数	
校验和	1	0 ~ 255	校验和是设备代码、命令代码、命令参数这三 部分所有字节数据求和取低 8 位	

2.2.3.1.3 控制指令 (系统→测距模块)

命令代码	说明	命令参数字节数
0x01	设备自检	0
0x02	单次测距	0
0x03	设置首/末/多目标	1
0x04	连续测距	0
0x05	停止测距	0
0xA0	设置激光测距模块波特率	4
0xA1	设置连续测距频率	2
0xA2	设置最小选通距离	2
0xA3	查询最小选通距离	0
0xA4	设置最大选通距离	2
0xA5	查询最大选通距离	0
0xA6	查询 FPGA 软件版本号	0
0xA7	查询 MCU 软件版本号	0
0xA8	查询硬件版本号	0
0xA9	查询 SN 号	0

0x90	查询出光总次数	0
0x91	查询本次上电出光次数	0

2.2.3.1.4 响应数据 (测距模块→系统)

命令代码	说明	命令参数字节数
0x01	设备自检	4
0x02	单次测距	7
0x03	设置首/末/多目标	0
0x04	连续测距	4
0x05	停止测距	0
0x06	测距异常(仅测距异常指令中状态异常时,在回传完单 次测距或连续测距的响应指令后回传该条指令)	4
0xA0	设置激光测距模块波特率	4
0xA1	设置连续测距频率	2
0xA2	设置最小选通距离	2
0xA3	查询最小选通距离	2
0xA4	设置最大选通距离	2
0xA5	查询最大选通距离	2
0xA6	查询 FPGA 软件版本号	4
0xA7	查询 MCU 软件版本号	4
0xA8	查询硬件版本号	4
0xA9	查询 SN 号	3
0x90	查询出光总次数	3
0x91	查询本次上电出光次数	3

2.2.3.1.5 操作流程

测距模块上电后,默认处于待机模式,需要使能模块电源开关 (POWER_ON拉高),约1.5s左右的时间 (驱动电容完成充电)后,方可进行下文中的所有指令操作。

2.2.3.1.6 具体协议

- a) 设备自检
- (1) 发送给激光测距模块:

描述 | 0xEE | 0x16 | 0x06 | 0x03 | 0x01

字	节		0		1	2		3	4	5
描	述		0xEE	0	x16	0x02	02	x03	0x01	0x04
(2) 激光测距模块返回				ļ:						
字节	0	1	2	3	4	5	6	7	8	9

Status3

Status2

Status1

Status0

Check_sum

Status3: 预留

Status2: 回波强度 0x00~0xFF

Status1: bit0--FPGA 系统状态; 1 正常 0 异常

bit1--激光出光状态; 1 出光 0 不出光 bit2--主波检测状态; 1 有主波 0 无主波

bit3--回波检测状态; 1 有回波 0 无回波 bit4--偏压开关状态; 1 偏压开启 0 偏压关闭

bit5--偏压输出状态; 1 偏压正常0 偏压异常

bit6--温度状态; 1 温度正常 0 温度异常

bit7--出光关断状态; 1 有效 0 无效 Status0: bit0--5V6 电源状态; 1 正常 0 异常

b) 单次测距

(1) 发送给激光测距模块:

字节	0	1	2	3	4	5
描述	0xEE	0x16	0x02	0x03	0x02	0x05

(2) 激光测距模块返回:

字节	0	1	2	3	4	5	6	7	8	9
描述	0xEE	0x16	0x06	0x03	0x02	Status	测距值 整数高 8 位	测距值 整数低 8 位	测距值 小数位	Check_sum

首/末目标测距时:

Status: 0x00 表示此次测距结果为单目标;

0x01 表示此次测距结果有前目标;

0x02 表示此次测距结果有后目标;

0x03 保留;

0x04 表示此次测距结果超距;

0x05 保留;

多目标测距时:

Status_bit3 ~ 0: 0x00 表示此次测距结果为单目标;

0x01 表示此次测距结果有前目标;

0x02 表示此次测距结果有后目标;

0x03 表示此次测距结果有前目标与后目标;

0x04 表示此次测距结果超距;

0x05 保留;

Status_bit7 ~ 4:

 $0x0 \sim 0xf$ 表示当前距离结果编号;取值范围[0,N-1],目标个数 $1 \leq N \leq 16$

c) 设置首/末/多目标

字节	0	1	2	3	4	5	6
描述	0xEE	0x16	0x03 (数据长度)	0x03	0x03	Target	Check_sum

Target: 0x01 设置首目标测距;

0x02 设置末目标测距; 0x03 设置多目标测距。

(2) 激光测距模块返回:

ĺ	字节	0	1	2	3	4	5
	描述	0xEE	0x16	0x02	0x03	0x03	0x06

d) 连续测距

(1) 发送给激光测距模块:

字节	0	1	2	3	4	5
描述	0xEE	0x16	0x02	0x03	0x04	0x07

(2) 激光测距模块返回:

字节	0	1	2	3	4	5	6	7	8	9
描述	OxEE	0x16	0x06	0x03	0x04	Status	测距值 整数高 8 位	测距值 整数低 8 位	测距值 小数位	Check_sum

首末目标测距时:

Status: 0x00 表示此次测距结果为单目标;

0x01 表示此次测距结果有前目标;

0x02 表示此次测距结果有后目标;

0x03 保留;

0x04 表示此次测距结果超距;

0x05 保留;

多目标测距时:

Status_bit3 ~ 0: 0x00 表示此次测距结果为单目标;

0x01 表示此次测距结果有前目标;

0x02 表示此次测距结果有后目标;

0x3 表示此次测距结果有前目标与后目标;

0x04 表示此次测距结果超距;

0x05 保留;

Status_bit7 ~ 4:

 $0x0 \sim 0xf$ 表示当前距离结果编号;取值范围[0,N-1],目标个数 $1 \le N \le 16$

e) 停止测距

字节	0	1	2	3	4	5
描述	0xEE	0x16	0x02	0x03	0x05	0x08
(2) 激光	测距模块返回]:				
字节	0	1	2	3	4	5

	描述	0xEE	0x16	0x02	0x03	0x05	0x08
--	----	------	------	------	------	------	------

f) 测距异常

(1) 激光测距模块返回:

字节	0	1	2	3	4	5	6	7	8	9
描述	0xEE	0x16	0x06	0x03	0x06	预留	预留	预留	Status1	Check_su m

Status1: bit0--FPGA 系统状态; 1 正常 0 异常

bit1--激光出光状态; 1 出光 0 不出光

bit2--主波检测状态; 1 有主波 0 无主波 bit3--回波检测状态; 1 有回波 0 无回波

bit4--偏压开关状态; 1 偏压开启 0 偏压关闭

bit5--偏压输出状态; 1 偏压正常 0 偏压异常

bit6--温度状态; 1 温度正常 0 温度异常 bit7--出光关断状态; 1 有效 0 无效

只有当 Status1 中 bit0~7 出现异常,才会返回该指令。

g) 设置激光测距模块波特率

(1) 发送给激光测距模块:

描 OxE					Ü	U	1	0	9
述 E	0x16	0x06	0x03	0xA0	BaudHigh2 4	BaudHigh1 6	BaudLow 8	BaudLow 0	Check_su m

(2) 激光测距模块返回:

字节	0	1	2	3	4	5	6	7	8	9
描述	0xE E	0x16	0x06	0x03	0xA0	BaudHigh2 4	BaudHigh1 6	BaudLow 8	BaudLow 0	Check_su m

h) 设置连续测距频率

(1) 发送给激光测距模块:

字节	0	1		2	3	4	5	6	7
描述	OxEE	0x16	0x04	(数据长度)	0x03	0xA1	Freq	Num	Check_sum3
Freq:	0x01 ~ 0	OxOA 单	次/连续	测距频率					
Num:	0x00	予	百留						

(2) 激光测距模块返回:

字节	0	1	2	3	4	5
描述	0xEE	0x16	0x02	0x03	0xA1	0xA4

i) 设置最小选通距离

字节	0	1	2	3	4	5	6	7
描述	0xEE	0x16	0x04 (数据 长度)	0x03	0xA2	DIS_H	DIS_L	Check_sum

DIS_H: 距离高 8 位

DIS_L: 距离低 8 位

DIS: 10~20000 最小选通距离范围,单位 m

(2) 激光测距模块返回:

字节	0	1	2	3	4	5	6	7
描述	0xEE	0x16	0x04 (数据 长度)	0x03	0xA2	DIS_H	DIS_L	Check_sum

DIS_H: 距离高 8 位 DIS_L: 距离低 8 位

DIS: 10~20000 最小选通距离范围,单位 m

i) 查询最小选通距离

(1) 发送给激光测距模块:

字节	0	1	2	3	4	5
描述	0xEE	0x16	0x02	0x03	0xA3	0xA6

(2) 激光测距模块返回:

字节	0	1	2	3	4	5	6	7
描述	0xEE	0x16	0x04 (数据长度)	0x03	0xA3	DIS_H	DIS_L	Check_sum

DIS_H: 距离高 8 位

DIS_L: 距离低 8 位

DIS: 10~20000 最小选通距离范围,单位 m

k) 设置最大选通距离

(1) 发送给激光测距模块:

` '	» · · · · · · · ·	, ., <u> </u>	D * / /					
字节	0	1	2	3	4	5	6	7
描述	0xEE	0x16	0x04 (数据长度)	0x03	0xA4	DIS_H	DIS_L	Check_sum

DIS_H: 距离高 8 位 DIS_L: 距离低 8 位

DIS: 10~20000 最大选通距离范围,单位 m

(2) 激光测距模块返回:

字节	0	1	2	3	4	5	6	7
描述	0xEE	0x16	0x04 (数据 长度)	0x03	0xA4	DIS_H	DIS_L	Check_sum

DIS_H: 距离高 8 位 DIS_L: 距离低 8 位

DIS: 10~20000 最大选通距离范围,单位 m

1) 查询最大选通距离

字节	0	1	2	3	4	5
描述	0xEE	0x16	0x02	0x03	0xA5	0xA8

(2) 激光测距模块返回:

字节	0	1	2	3	4	5	6	7
描述	0xEE	0x16	0x04 (数据 长度)	0x03	0xA5	DIS_H	DIS_L	Check_sum

DIS_H: 距离高 8 位

DIS_L: 距离低 8 位

DIS: 10~20000 最大选通距离范围,单位 m

m) 查询FPGA软件版本号

(1) 发送给激光测距模块:

字节	0	1	2	3	4	5
描述	0xEE	0x16	0x02	0x03	0xA6	0xA9

(2) 激光测距模块返回:

字节	0	1	2	3	4	5	6	7	8	9
描述	0xE E	0x16	0x06	0x03	0xA6	Version	Date	MonYear	Author	Check_sum

Version: bit7~bit4 主版本号 (1~15)

bit3~bit0 次版本号 (0~15)

eg: 0x10——V1.0

Data: 日期 (1~31)

MonYear: bit7~bit4 月份 (1~12)

bit3~bit0 年份 (0~15) , 对应 2020~2035 年

Author: 0x6c cliu;

0x5d dwu

Oxcc cycheng

n) 查询MCU软件版本号

(1) 发送给激光测距模块:

字节	0	1	2	3	4	5
描述	0xEE	0x16	0x02	0x03	0xA7	0xAA

(2) 激光测距模块返回:

_										
字节	0	1	2	3	4	5	6	7	8	9
描述	0xE E	0x16	0x06	0x03	0xA7	Version	Date	MonYear	Author	Check_sum

Version: bit7~bit4 主版本号 (1~15)

bit3~bit0 次版本号 (0~15)

eg: 0x10—V1.0

Data: 日期 (1~31)

MonYear: bit7~bit4 月份 (1~12)

bit3~bit0 年份 (0~15) ,对应 2020~2035 年

Author: 0x00 jyang
0xf1 llfu
0x01 zqxiong

o) 查询硬件版本号

(1) 发送给激光测距模块:

字节	0	1	2	3	4	5
描述	0xEE	0x16	0x02	0x03	0xA8	0xAB

(2) 激光测距模块返回:

字节	0	1	2	3	4	5	6	7	8	9
描述	0xE E	0x16	0x06	0x03	0xA8	MBVS	CTVS	APDVS	LDVS	Check_sum

MBVS: 主板硬件版本号

CTVS: 控制板硬件版本号 APDVS: 探测板硬件版本号 LDVS: 驱动板硬件版本号

bit7~bit4 主版本号 (1~15) bit3~bit0 次版本号 (0~15)

eg: 0x10——V1.0

p) 查询SN号

(1) 发送给激光测距模块:

字节	j	0	1	2	3	4	5
描述	2	0xEE	0x16	0x02	0x03	0xA9	0xAC

(2) 激光测距模块返回:

字节	0	1	2	3	4	5	6	7	8
描述	0xEE	0x16	0x05	0x03	0xA9	MonYear	Num_H	Num_L	Check_sum

MonYear: bit7~bit4 月份 (1~12)

bit3~bit0 年份 (0~15) , 对应 2020~2035 年

Num_H: 编号高 8 位 Num_L: 编号低 8 位 Num: 1 ~ 999 编号

g) 查询出光总次数

(1) 发送给激光测距模块:

字节	0	1	2	3	4	5
描述	0xEE	0x16	0x02	0x03	0x90	0x93

(2) 激光测距模块返回:

字节	0	1	2	3	4	5	6	7	8			

描述 OxEE Ox16 Ox05 Ox03 Ox90 PNUM3 PNUM2 PNUM1 Check_sum

PNUM3: 出光总次数, bit23~bit16 PNUM2: 出光总次数, bit15~bit8 PNUM1: 出光总次数, bit7~bit0

r) 查询本次上电出光次数

(1) 发送给激光测距模块:

字节	0	1	2	3	4	5
描述	0xEE	0x16	0x02	0x03	0x91	0x94

(2) 激光测距模块返回:

字节	0	1	2	3	4	5	6	7	8
描述	0xEE	0x16	0x05	0x03	0x91	PNUM3	PNUM2	PNUM1	Check_sum

PNUM3: 本次上电出光次数, bit23~bit16; PNUM2: 本次上电出光次数, bit15~bit8; PNUM1: 本次上电出光次数, bit7~bit0

3 主要技术指标

3.1 功能

激光测距机主要功能如下:

- a) 首末目标测距功能;
- b) 多目标测距功能;
- c) 距离选通功能;
- d) 外部电源控制功能;
- e) 激光累计次数功能。

3.2 性能

激光测距机主要性能指标如下:

- a) 工作波长: 1535nm ± 5nm;
- b) 测距能力: ≥3000m (2.3m×4.6m靶板或车辆, 相对湿度≤60%, 能见度≥8Km);
- c) 测距盲区: ≤15m;
- d) 测距精度: ≤ ± 1m;
- e) 测距频率: 单次、1Hz~10Hz;
- f) 准测率: ≥98%;
- g) 距离分辨率: ≤20m;
- h) 发散角: ≤0.6mrad.

3.3 环境适应性

a) 工作温度: -40℃~+70℃;

- b) 贮存温度: -55℃~+75℃ (随整机考核);
- c) 温度冲击: -50°C~+70°C (随整机考核);
- d) 振动: 5~50~5Hz, 1倍频程/min, 2.5g (随整机考核);
- e) 冲击: 1200g, 1ms (随整机考核)。

3.4 测距能力

在能见度≥8km,相对湿度≤60%的环境,对2.3m×4.6m靶板或车辆测距,激光测距机的测距能力可达到3000m以上,且准测率大于98%,这也是判断激光测距机是否合格的关键指标。图4为理论情况下激光测距机测程与能见度关系。

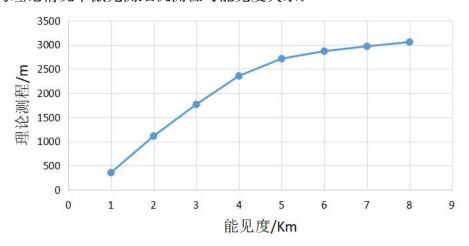


图 4 激光测距机测程与能见度关系

目标反射率、测量角度等因素会影响测距能力。通常目标反射率越高,测距能力越好;激光角度越垂直照射到测量目标反射面时,测距能力越好。在实际应用中,尽可使激光测距机激光垂直照射到目标面,对于中高反射率的目标,如交通指示牌等目标,激光测距机的能力表现也可以更好。但对于难以形成漫反射的目标,如水面等,激光测距机可能无法准确测量(对于水面测量需求,我公司有相关型号可满足,敬请咨询)。

3.5 安全性

为了保障受试对象和测试人员安全,在 SFB3000A 小型激光测距机的设计过程中采取以下安全措施:

- a) 按照GJB 900A-2012《装备安全性工作通用要求》进行安全性设计与分析;
- b) 使用非易燃材料, 机械及电气接口连接稳定牢靠;
- c) 关键系统和关键功能进行控制的部件具有防差错设计;
- d) 采取合理的设计手段避免水汽聚集, 导致短路;
- e) 以人眼安全激光为工作波段;
- f) 在人体安全电压以下工作。

4 光窗使用建议

4.1 材料选型

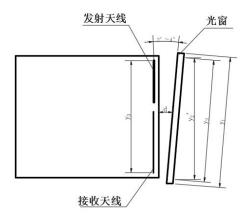
4.1.1 光窗材料

光窗材料选用光学玻璃H-K9L。H-K9L是最常见的无色光学玻璃,适用于300nm~2100nm激光范围,性价比高,物理性质优越。

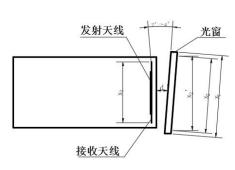
4.1.2 加工要求

- a) 光窗的楔角公差尽可能小, 我们推荐楔角公差≤3' (公差等级≤7级);
- b) 光窗光学表面尽可能光滑, 我们推荐轮廓算数平均偏差 (Ra) 为0.012。

4.2 使用建议


4.2.1 光窗镀膜建议

1535nm激光测距机光窗建议镀膜1525nm~1545nm增透膜,透过率≥99%。根据产品具体使用环境,可另外选择光窗外表面镀憎水膜或硬质膜等其他防护膜,其余指标参照GJB2485-95,透过率≥97%。


4.2.2 光窗外形及使用建议

光窗的有效口径依据不同产品而定,其外形尺寸应保证光窗有效口径-光窗外径≥2mm,测距机天线外径-光窗有效口径投影尺寸≥1.5mm,示意图如下图所示。由于光窗对激光有一定的吸收,建议光窗本身厚度根据外形尺寸控制在2~4mm以内。

由于光窗透过率较高,建议发射光轴与光窗法线的轴偏控制在2°~4°以内,光窗与两镜筒位置示意图如图5所示。同时光窗与测距机之间的空气间隔应尽可能小。

光窗有效口径 y_2 -光窗外径 y_1 $\geqslant 2$ mm 测距机天线外径 y_3 -光窗有效口径投影尺寸 y_2 ' $\geqslant 1.5$ mm 光窗与测距机之间的空气间隔d应尽可能小

光窗有效口径 \mathbf{x}_2 -光窗外径 \mathbf{x}_1 \geqslant 2mm 测距机天线外径 \mathbf{x}_3 -光窗有效口径投影尺寸 \mathbf{x}_2 ' \geqslant 1.5mm 光窗与测距机之间的空气间隔d应尽可能小

(a) 方式一

(b) 方式二

图 5 光窗外形尺寸及摆放示意图

5 操作

为了使您能充分了解本系统的各种功能,正确掌握安装、使用和维护方法,在安装和使用本系统之前,请您认真阅读本章内容。

5.1 开机操作

5.1.1 开机

将激光测距机、调试电缆、直流电源及上位机按图6所示连接。

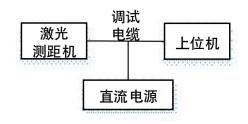


图 6 连接示意图

开机操作:接通电源。

5.2 关机操作

5.2.1 关机前

关机前应确认各产品工作进程及任务处于结束状态,程序退出。

5.2.2 关机

关机步骤: 断开电源。

5.3 使用操作

5.3.1 测距模式

测距模式操作方法:

- a) 向激光测距机发送"单次测距"命令(见2.2.3.1.3);激光测距机进行单次测距并 汇报测距状态、距离值(见2.2.3.1.4);
- b) 向激光测距机发送"连续测距"命令(见2.2.3.1.3),激光测距机进行连续测距并 汇报测距状态、距离值(见2.2.3.1.4);
- c) 发送"停止测距"命令(见2.2.3.1.3),停止测距。

5.3.2 首末目标与距离选通设置

首末目标测距即一次测距最多可获得两个不同距离目标的距离信息;

距离选通即在测距能力范围内设定一段选通距离(十六进制表示),低于选通值的目标距离信息不回送,测程范围内高于选通的测距值为有效测距;

如需设置,操作方法如下:

- a) 向激光测距机发送"选通值设置"命令(见2.2.3.1.3);
- b) 向激光测距机发送"测距"命令(见2.2.3.1.3),激光测距机测距并判断回送距离 信是否大于距离选通值后汇报测距结果;
- c) 发送"停止测距"命令(见2.2.3.1.3),停止测距;

如不需要使用距离选通功能时、则需手动恢复初始设置(选通值设置为0)。

5.3.3 自检模式

自检操作方法:

- a) 向激光测距机发送"自检查询"指令(见2.2.3.1.3);
- b) 激光测距机开始进行自检并回送当前环境温度、工作状态等信息(见2.2.3.1.4)。

6 检查与维护

6.1 一般检查

产品初次使用和重新更换资源模块后应进行目视和通电检查。对于正常使用的产品,在使用前只进行通电检查。

6.1.1 目视检查

目视检查步骤如下:

- a) 检查产品的外观正常与否;
- b) 电缆连接是否有误, 连接应牢固。

6.1.2 通电检查

通电检查步骤如下:

- a) 按5.1的步骤完成开机操作;
- b) 启动自检测试模块;
- c) 检查结束后,按5.2的步骤完成关机操作。

6.2 定期维护

激光测距机正常工作状态下无需进行维护, 在无尘环境下存储超过一年需要进行维护, 内容包含:

6.2.1 一般检查

产品在不带电状态下进行一般检查, 步骤如下:

- a) 产品和测试电缆插头 (座) 所有标记、数字均应正确、清晰;
- b) 面板上各种螺钉应紧固;
- c) 应保证产品的光学玻璃目视看不到有妨碍正常观察的光斑、麻点、水斑、霉菌、 指印、尘粒等附着物和裂纹。

6.2.2 通电检查

对激光测距机通电进行全面的检查和维护. 内容包括:

- a) 依次接通产品电源;
- b) 按5.1的步骤完成开机操作;
- c) 启动产品自检测模块, 完成产品自检;
- d) 按5.2的步骤完成关机操作。

7 故障现象分析及排除方法

激光测距机为精密产品,当出现故障时,需要整机返厂进行故障分析定位与维修,不允许自行修复。

常见故障现象及排除方法见表3。

表 3 常见故障现象及排除方法

故障现象	可能原因	检查方法	排除措施
产品无法正常上电	a) 供电电源与连接 线故障 b) 电路故障	检查电源与连接线	a) 更换电源或连接 线 b) 电路故障联系厂 家协助解决
无法发送通讯指令	a) 连接线故障 b) 电源供电不正常 c) 激光测距机通讯 故障	a) 检查连接线是否 正常 b) 检查电源供电是 否正常	a) 更换连接线与电源 b) 通讯问题联系厂 家协助解决

8 包装、运输和贮存要求

8.1 包装

启封后的产品,当需要重新库存时,应按原包装进行包装。当产品需要返厂时,应尽量采用原包装,当采用其它形式包装时,不应引起产品性能降低和损伤。

8.2 运输

对重新装箱的产品,可以用汽车、火车、飞机、轮船等运输,运输中,包装件应固定在运输工具上,避免冲击、野蛮装卸和雨雪的淋袭等现象发生。公路运输、铁路运输环境参照GJB 150.16A-2009。

8.3 贮存

对重新装箱的产品,不得在野外露天存放。应在贮存温度为0℃~+30℃、相对湿度不大于80%、无腐蚀性物质侵蚀、无强烈机械振动和冲击、无强磁场的库房里。